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ABSTRACT

The earth's atmosphere is considered 
as made up of oblate spheroidal

layers of variable density 
lying over an oblate spheroidal 

Earth. The

gravitational attraction of 
the atmosphere at exterior 

points is com-

puted and its contribution to the usual 
spherical harmonic gravita-

tional expansion is assessed. 
The potential is also found for points

at the botttom of the model atmosphere. 
This latter result is of

interest for determination of the 
potential at the surface of the

geoid. The atmospheric correction 
to the geoid determined from

satellite coefficients is given.
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A. SIMPLIFIED MODEL FOR THE GRAVITATIONAL

POTENTIAL OF THE ATMOSPHERE AND ITS EFFECT ON THE GEOID

by

Stephen j. Madden, Jr.

I. Introduction

The gravitational contribution for the earth's atmosphere is be-

coming of more interest as the precision of gravitational determinations

increases and as it becomes important to relate satellite altimetry

measurements to the gravitational field of earth. Accordingly, it is

useful to have estimates of the importance of its effect. The present

report is concerned with a simplified treatment which is analytically

tractable and which, at the same time, preserves the essential features

of the actual situation.

Since there is a flattening effect due to the ellipticity of the

earth, the atmosphere is considered to be made up of oblate spheroidal

layers of constant density. The layers are confocal'with the reference

ellipsoid defined by the adopted reference constants of the 1968 I..A.U.

The lower limit of the atmosphere is.assumed to be the reference

ellipsoid.

The general procedure used is to find the contribution, to the

external and internal potentials, of a thin spheroidal shell of constant

density. This shell is bounded by confocal ellipsoids. The external

ellipsoid has semi-major axis a', semi-minor axis c' and eccentricity

e'; the corresponding quantities for the internal ellipsoid are a, c,

and e. Since the ellipsoids are confocal,

a'e' = 'ae = 2-c2 = 2  2 E (1)

Once the potential of the shell is found, a limiting argument is used
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to find the contribution of 
a shell of finite thickness 

and variable

density.

2. The External Potential

The solution to the external 
problem follows easily from 

a result

in (Macmillan, 1958). If the field point is located 
by spherical co-

ordinates r and e outside of a solid 
ellipsoid of density p, then 

the

potential is

o (.i)n E2n

V = 3MG -E (cos ), .(2)

n=O (2n+L) 3) rl 2n

where M is the mass of the spheroid, G is 
the gravitational constant,

r is the distance from the center, 
and 8 is the colatitude. If the

potential due to a spheroid of density p 
and semi-major axis a' is

computed using (2), and if the potential due to 
a spheroid of semi-

major axis a and density -p is 
computed, then the potential caused 

by

the spheroidal shell contained 
between the two bounding surfaces 

is

n (-Jn E2n

AV = 3G AM (2n+l)(2n+) E2nr P 2n(Cs 8).

n= 0

Here AM is the mass of the shell, 
and r > a. The total potential

contribution of a sequence of very thin layers 
is, using a limiting

argument,

- 1 n E2n P (cos 6). (3)

VAT 3GMA n= (2n+l)2n+3) 2n+1 P2n

The external potential of the atmosphere 
depends only on the total mass

and the-linear eccentricity, E. 
This result is in agreement with 

the

moreiheral MacLaurin's theorem (MacMillan, 1958). In this 'expression,
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the quantity E is the same as that for the reference ellipsoid. It can

be seen, from a comparison test using IP2n(cos e)I < 1, that this series

converges at all points on the ellipsoid.

3. The Internal Potential

The derivation of the internal potential is more complicated.

Since there is an axial symmetry in the problem we need only find the

potential on the axis of symmetry, the z-axis. (MacMillan, 1958, pg.

360). The first step is to find an expression analogous to (2) where

the field point lies inside a homogeneous ellipsoid of density p. This

expression follows as a special case of an expression in (MacMillan,

1958), for this potential,

2 z2 ds

sV )pGa c 21 )o c2s ( a 2 + s ) 2 ( c 2 + s )

The integral here can be evaluated directly in terms of elementary

functions (Pierce and Foster, 1961), or found as a limiting case of

the triaxial potential (Byrd and Friedman, 1971). It is

S 21pGa2c (i + z2 sin-le z (4)
V= E E 1 +2si e cE

Here z lies within the ellipsoid.

If we consider the contribution to the.potential of a thin shell

between ellipsoids with a' = a + A and a, where A/a << 1, then if z

lies inside both shells,

_ 2rGpa'2 + z2 sin- z2

Ashell E 1  sine

2 z 2 \ 1 e  z 2 , .

2TGpa 2c 1 + -1 Z2-
E sin e cEI



or

AV 2shll pG 2) [a' 2c'sin-le'-a 2c sin-le]
shell E ( 2 E

z2  2 2
- (a 2-a2)"

If we look at the case where A/a << 1, then

a,2 - a2  2a .

Similarly if we define

2 -1
f(a) = a c sin e,

with

c E - , e E=a

then

f(a') -f(a) + f'(a)A

If we carry out the differentiation,

a,2csin-le'-a 2c sin-le z (2ac sin-le + sin-le Ea)A.

Thus, on the z-axis,

2  2

Gshell 1 + - [2ac sin le + sin -le-Ea]A- iaA
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or

S2GpM z 2 M 2z2a (5)
Vshell = 2Gp E -

with

-1 a- . -1
M = 2ac sin e sin e - Ea.

The total contribution of many thin shells to the potential is more

cumbersome than in the exterior case since the density variation 
must

be explicitly considered. Let us rewrite (5) as

AVshell = 2nGQ(a)p(a)da, (6)

with

da= A

and

Q(a M 2 M 2z2a
Q(a=E +z 3 ZE E

If we sum the total contributions of many shells, using (6),

VATM = 2rGf Q()p( )d

where a now corresponds to the reference ellipsoid. For present

purposes the density will be assumed to be an exponential function

of the quantity E,

p -a

Ott)= poe H 5.



with H a scale height characteristic Of 
the lower atmosphere where the

bulk of the atmospheric mass is located. A typical value for H is 8Km.

With this assumption,

&-a

VATIM 27Gp0fa e H Q( )d .

In the evaluation of this integral we can 
take advantage of the rela-

tive sizes of a and H; the quantity Q(E) varies slowly during a scale

height variation in E and, as can be shown,

(-a

VATM 27Gp 0Q(a) re H dS,
Ja

or

VATM = 27GP 0HQ(a),

where terms on the order of H/a have been neglected 
with respect to one.

If we return to the notation of (5),

VATM = 21P 0GH( + z 2 M  2z2a (7)

This expression can be evaluated explicitly if the reference values

of the constants are used. However, since we are primarily interested

in representative values, we can utilize the fact that 
the eccentricity

of the reference ellipsoid is small to find that

M = 2a 2 e + 5 a2 e 5 + O(e 7 ).

If this is used in (7),
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VATM = 2np 0 GH 2a + 4 z 2 e 2

This expression yields the potential anywhere inside the atmospheric

shell simply by replacing z2 with z2-(x2+y2)/2, and 
finally

VATM = 2p 0GH[2a + 4 e2  z2 x2 (8)

This equation, plus that of (3) yields the desired potential expressions.

4. Examination of the Solutions

The most natural questions concerning the 
external gravitational

potential of the atmosphere are those involving 
its contribution to

the already measured coefficients of the 
total external potential of

the earth and atmosphere. The models of- the atmosphere used here

possess symmetry with respect to the 
rotation axis of the earth and

hence can contribute only zonal terms. We thus restrict consideration

to these terms. The standard zonal expression is given as

GMT COV _ I,
T r n=2

or

VT r - 2 2(cos r)- 3 3 3(cos )- 4 J4 4 (cos

with the subscript T-referring to the contribution of both 
the solid

earth and atmosphere. If we write the corresponding external 
contri-

bution to the atmosphere, using (3),

7



GMT MA e2 MA a\2  3e 4 MA (Cos

VA - - ~ - (co- 8)+ -e) TP4( os )..

With this form we can compare the magnitudes of J2 and 
J4 and the at-

mospheric terms. If we use the subscript A to denote quantities per-

taining to the atmosphere alone, then

e2  MA

2A 5 M

and

3e4 MA

4A 35 MT

The constants appearing here are the eccentricity, available from the

I.A.U. flattening, f = 1/298.25, and from (Verniani, 1966) are

2
e = .0066945,

21
MA = 5.136x10 gm

MT = 5.976x1027 gm

With these values we find

-9
J2A = -1.151x10-9

J4A = 3.302x10-1

This value for J2A compares favorably with the value -1.9 109  arrived

at by Lundquist (private communication) who assumed all 
of the atmos-

pheric mass was concentrated in a shell of the dimensions 
of the reference

ellipsbid. These numbers correspond to the total values-
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J2 = 1082.7x10"6-

J4= -1.649x10-6

The atmospheric values enter in the seventh place in J2 and in the

sixth place in J4.

It is probable that the actual, non-idealized, atmosphere ac-

tually has a larger influence than those shown here. The atmosphere

is not of constant density on spheroidal shells, and an examination

of data shows that the earth probably has a somewhat larger value of

J2A than is shown here.

The case of the interior potential is somewhat different, here

there is no convenient series for comparison. For this reason we com-

pute, as a measure of importance, the maximum interior attraction of

the atmosphere at a point on the surface of the reference ellipsoid.

From equation (8) it follows that, at any point inside the atmospheric

shell, the force:is

F VV 27p GH y-Y2(
-ATM ATM 0  1 a

or

S2 GHe) (x2+y2+4z2).

Now on the reference ellipsoid

2 2
2 -- =z 1,

a c



so that on this surface

2 a2

ATM 1  7r POGH 1) a (4- c2 )2

This last quantity varies as a function of z2 which has the maximum

value z c2 . Thus

16 7P0GHe2 c
ATMI max 0GHe

max

If we use the numerical values

p0 
= 1.23x10-3 gm/cm3

G = 6.67x10-8 cm3/gm sec 2

H = 8x10 5 cm

e2 = .0066945

c 11
a 298.25

then

ATMI = 1.Sx10 - 6 cm/sec2- 1.5x10 mgal.
max

This result is extremely small. It corresponds to a negligible

displacement of the geoid.
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To assess the displacement of the geoid caused by the atmosphere,

we use the equation which states that it is an equipotential surface

of gravity. Let V be the gravity potential not including the atmo-

sphere and cSV be the internal atmospheric potential, then the geoid

is defined by

V(r(c), 6, ) + c6V (r(c), 0, *) = const. (9)

Here e is the ratio of the mass of the atmosphere to the mass of the

earth plus the mass of the atmosphere, a small quantity. If e is set

to zero we find the usual radius. Assume a Taylor expansion for r(e),

and

r(£) = r(0) + E' = +0

To first order, the correction to the radius is given by

E6V
6r = r() - r(O) - g

a result which follows from differentiation of (9).

If we use

"MA = 4TPo a
2H,

then (8). becomes

6 = GMT (MA) jr + 2 e 2  c
VATM = e V =a + 7 a) 32(cos)

and hence

r - V MA r + i 2 r 3 P2 (os)

To find a representative value, we set

r = a, P2 (cos 8) = 1, and

MA 1 2 216r = IT a. 1 + e .

The first term corresponds to a simple correction of the mass figure

when we are operating inside the atmosphere, the second is a smaller

latitude dependent term. To estimate their magnitude we use the

11



values on the previous pages to find

MA
6r1 = a = 5.5 meters

T

and
MA 2

6r 2 = a ( e) .5 cm.

For present purposes, it is. apparent that a simple correction

of the mass will suffice. The remaining latitude dependent term is

inconsequential with radar altimeter accuracies at their present or

anticipated levels.

It is possible, of course, that the term 6r2 above is smaller

than the true atmospheric contribution would be if latitudinal

density variations were taken into account. However, if the result

is small by a factor of ten, this term will not need to be included

in analyses until radar altimeter accuracy figures improve by a factor

of one hundred.
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